

Date Planned : / /	Daily Tutorial Sheet - 2	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

In order to get maximum calorific output, a burner should have an optimum fuel to oxygen ratio which corresponds to 3 times as much oxygen as is required theoretically for complete combustion of the fuel. A burner which has been adjusted for methane as fuel (with x litre/hour of CH_4 and 6x litre/hour of O_2) is to be readjusted for butane, C_4H_{10} .

In order to get the same calorific output, what should be the rate of supply of butane and oxygen? Assume that losses due to incomplete combustion etc., are the same for both fuels and that the gases behave ideally. Heats of combustions:

$$CH_4 = -809 \text{ kJ} / \text{mol}, C_4H_{10} = -2878 \text{ kJ} / \text{mol}$$

- 17. The standard molar enthalpies of formation of cyclohexane (ℓ) and benzene (ℓ) at 25°C are -156 and + 49 kJ mol⁻¹ respectively. The standard enthalpy of hydrogenation of cyclohexene (ℓ) at 25°C is -119 kJ mol⁻¹. Use these data to estimate the magnitude of the resonance energy of benzene. (1996)
- 18. Compute the heat of formation of liquid methyl alcohol in kJ mol⁻¹, using the following data. Heat of vaporization of liquid methyl alcohol = 38 kJ/mol. Heat of formation of gaseous atoms from the elements in their standard states: (1997)

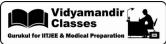
H = 218 kJ/mol, C = 715 kJ/mol, O = 249 kJ/mol.

Average bond energies:

$$C - H = 415 \text{ kJ} / \text{mol}, C - O = 356 \text{ kJ} / \text{mol}, O - H = 463 \text{ kJ} / \text{mol}$$

- From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K. The enthalpy of formation of $CO_2(g)$, $H_2O(\ell)$ and propene (g) are -393.5, -285.8 and 20.42 kJ mol^{-1} respectively. The enthalpy of isomerisation of cyclopropane to propene is -33.0 kJ mol^{-1} .
- 20. Diborane is a potential rocket fuel which undergoes combustion according to the reaction. (2000) $B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)$

From the following data, calculate the enthalpy change for combustion of diborane.


$$2\,\mathrm{B(s)} + \frac{3}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{B}_2\mathrm{O}_3(\mathrm{s}); \qquad \Delta\mathrm{H} = -1273\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$
 (i)

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell);$$
 $\Delta H = -286 \,\mathrm{kJ \ mol}^{-1}$ (ii)

$$H_2O(\ell) \rightarrow H_2O(g);$$
 $\Delta H = 44 \text{ kJ mol}^{-1}$ (iii)

$$2 B(s) + 3 H_2(g) \rightarrow B_2 H_6(g);$$
 $\Delta H = 36 \text{ kJ mol}^{-1}$ (iv)

- 21. The ΔH_f° for $CO_2(g)$, CO(g) and $H_2O(g)$ are -393.5, -110.5 and -241.8 kJ mol⁻¹ respectively. The standard enthalpy change (in kJ) for the reaction: $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$ is: (2000)
 - **(A)** +524.1
- **(B)** +41.2
- (C) -262.5
- **(D)** -41.2

22 .	Which of the following reactions defines $\Delta H_{\mathrm{f}}^{\circ}$?								(2003)
	(A)	$C_{\text{(diamond)}} + O_2(g) \rightarrow CO_2(g)$							
	(B)	$\frac{1}{2}\mathrm{H}_2(\mathrm{g}) + \frac{1}{2}\mathrm{F}_2(\mathrm{g}) \to \mathrm{HF}(\mathrm{g})$							
	(C)	$\mathrm{N_2(g)} + 3\mathrm{H_2(g)} \rightarrow 2\mathrm{NH_3(g)}$							
	(D)	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$							
23.	The h	eats of combustion of carbon	and carbon mon	noxide a	are –393.5	and –28	3.5 kJ mo	l^{-1} , res	pectively.
	The h	eat of formation (in kJ) of carb	on monoxide per	r mole i	s:				(2004)
	(A)	676.5 (B) -67	76.5 (C)	-]	110	(D)	110		
24 .	For th	e reaction, $2 \text{CO} + \text{O}_2 \rightarrow 2 \text{CO}_2$	$_{2}; \Delta H = -560 \mathrm{kJ}$. Two n	noles of CO	and one	mole of (\mathbf{D}_2 are t	aken in a
	contai	ner of volume 1L. They com	pletely form two	o moles	s of CO_2 ,	the gases	deviate	apprecia	ably from
	ideal l	behaviour. If the pressure in	the vessel chang	ges fron	n 70 to 40	atm, find	the mag	-	
		C	1 1_ T)					()	1
	value)	of ΔU at 500 K. (1Latm = 0.1)	I KJ)					·	(2006)
25 .		of ΔU at 500 K. (1Latm = 0.)		h molec	cular weigl	nt 28 was	burnt in		
25.	In a c		3.5 g of a gas with		_			excess	oxygen at
25 .	In a c	onstant volume calorimeter, 3	3.5 g of a gas with	und to	increase fi	rom 298.0	K to 298	excess of 8.45 K d	oxygen at ue to the
25 .	In a constant	onstant volume calorimeter, 3 K. The temperature of the ca	3.5 g of a gas with lorimeter was for the heat capacity of	und to	increase fi	rom 298.0	K to 298	excess of 8.45 K d	oxygen at ue to the
	In a constant of the combination of the constant of the consta	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the e enthalpy of combustion of th	6.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol	und to of the c	increase fi	rom 298.0 is 2.5kJ	K to 298 K^{-1} , the	excess of a second seco	oxygen at ue to the ical value
25. 26.	In a constant of the combination of the constant of the consta	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the	6.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol	und to of the o	increase fi	rom 298.0 is 2.5kJ	K to 298 K^{-1} , the	excess of a second seco	oxygen at ue to the ical value (2009)
	In a concept of the specific s	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the e enthalpy of combustion of the pecies which by definition has	5.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol- zero standard m	und to of the c -1 is colar en	increase firalorimeter	rom 298.0 is 2.5kJ	K to 298 K^{-1} , the	excess of a second seco	oxygen at ue to the ical value (2009)
	In a combustion of the space (A)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the pecies which by definition has ${\rm Br}_2(g)$	5.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol- zero standard m (B)	und to of the c -1 is nolar en C:	increase fit alorimeter	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second control of the second con	oxygen at ue to the ical value (2009) (2010)
26.	In a combination of the space (A) (C)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the cecies which by definition has ${\rm Br}_2({\rm g})$ ${\rm H}_2{\rm O}({\rm g})$	2.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol-zero standard m (B) (D)	und to of the c -1 is nolar en C:	increase fit alorimeter	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second contract \bullet and \bullet are \bullet and \bullet and \bullet and \bullet are \bullet and \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are	oxygen at ue to the ical value (2009) (2010)
26.	In a combination of the space (A) (C)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the cecies which by definition has ${\rm Br}_2({\rm g})$ ${\rm H}_2{\rm O}({\rm g})$ the data provided, calculate the	2.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ mol-zero standard m (B) (D)	und to of the c -1 is nolar en C: C: d energ	increase fit alorimeter——. thalpy of f ${\rm l}_2({\rm g})$ ${\rm H}_4({\rm g})$ ${\rm Y}$ (kJ mol	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second contract \bullet and \bullet are \bullet and \bullet and \bullet and \bullet are \bullet and \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are	oxygen at ue to the ical value (2009) (2010)
26.	In a combination of the space (A) (C)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the cecies which by definition has $Br_2(g)$ $H_2O(g)$ the data provided, calculate the condenergy of a C – H bond as	5.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ molizero standard m (B) (D) The multiple bond is 350 kJ mol ⁻¹ :	und to of the c of the c	increase finalorimeter thalpy of f l ₂ (g) H ₄ (g) y (kJ mol	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second contract \bullet and \bullet are \bullet and \bullet and \bullet and \bullet are \bullet and \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are	oxygen at ue to the ical value (2009) (2010)
26.	In a combination of the space (A) (C)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the calustion process which by definition has $\operatorname{Br}_2(g)$ $\operatorname{H}_2\operatorname{O}(g)$ the data provided, calculate the energy of a C – H bond as $2\operatorname{C}(s) + \operatorname{H}_2(g) \to \operatorname{C}_2\operatorname{H}_2(g)$;	i.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ molizero standard m (B) (D) The multiple bond 350 kJ mol ⁻¹ : ΔH = 225 kg	und to of the c of th	increase finalorimeter thalpy of f l ₂ (g) H ₄ (g) y (kJ mol	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second contract \bullet and \bullet are \bullet and \bullet and \bullet and \bullet are \bullet and \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are	oxygen at ue to the ical value (2009) (2010)
26.	In a combination of the space (A) (C)	onstant volume calorimeter, 3 K. The temperature of the calustion process. Given that the enthalpy of combustion of the calustion process which by definition has $\operatorname{Br}_2(g)$ $\operatorname{H}_2\mathrm{O}(g)$ the data provided, calculate the energy of a C - H bond as $2\operatorname{C}(s) + \operatorname{H}_2(g) \to \operatorname{C}_2\mathrm{H}_2(g)$; $2\operatorname{C}(s) \to 2\operatorname{C}(g)$;	i.5 g of a gas with lorimeter was for the heat capacity of the gas in kJ molification (B) (C) The multiple bond of the multiple bond of the multiple bond of the multiple defined at the capacity of the multiple bond o	und to of the c of th	increase finalorimeter thalpy of f l ₂ (g) H ₄ (g) y (kJ mol	rom 298.0 is 2.5 kJ formation a	K to 298 K ⁻¹ , the	excess of a second contract \bullet and \bullet are \bullet and \bullet and \bullet and \bullet are \bullet and \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet and \bullet are \bullet are \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are \bullet are \bullet and \bullet are	oxygen at ue to the ical value (2009) (2010)

(A) $+2900\,kJ$

 $-2900\,kJ$ (B)

(C) $-16.11\,\mathrm{kJ}$ **(D)** $+16.11 \, kJ$

29. Given:
$$C_{(graphite)} + O_2(g) \rightarrow CO_2(g)$$
; $\Delta_r H^{\circ} = -393.5 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l); \ \Delta_r H^{\circ} = -285.8 \text{ kJ mol}^{-1}$$

$$CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g); \Delta_r H^\circ = +890.3 \text{ kJ mol}^{-1}$$

Based on the above thermochemical equations, the value of $\Delta_r H^\circ$ at 298 K for the reaction $C_{(graphite)} + 2H_2(g) \rightarrow CH_4(g)$ will be:

(A)
$$-144.0 \text{ kJ mol}^{-1}$$

(B)
$$+74.8 \text{ kJ mol}^{-1}$$

(C)
$$+ 144.0 \text{ kJ mol}^{-1}$$

(D)
$$-74.8 \text{ kJ mol}^{-1}$$

30. The surface of copper gets tarnished by the formation of copper oxide. N_2 gas was passed to prevent the oxide formation during heating of copper at 1250 K. However, the N_2 gas contains 1 mole % of water vapour as impurity. The water vapour oxidises copper as per the reaction given below: (2018)

$$2\mathrm{Cu}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \to \mathrm{Cu}_2\mathrm{O}(\mathrm{s}) + \mathrm{H}_2(\mathrm{g})$$

 p_{H_2} is the minimum partial pressure of H_2 (in bar) needed to prevent the oxidation at 1250 K. The value of $ln(p_{H_2})$ is _____.

(Given: total pressure = 1 bar,

R (universal gas constant) = $8JK^{-1}mol^{-1}$, ln(10) = 2.3. Cu(s) and Cu₂O(s) are mutually immiscible.

At 1250 K:
$$2 \text{Cu(s)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{Cu}_2 \text{O(s)}; \qquad \Delta G^- = -78000 \text{ J mol}^{-1}$$

$${\rm H_2(g)} + \frac{1}{2}{\rm O_2(g)} \to {\rm H_2O(g)}; \qquad \quad \Delta {\rm G^-} = -178000 \ {\rm J \ mol}^{-1}; \ ({\rm G \ is \ the \ Gibbs \ energy})$$

Choose the reaction(s) from the following options, for which the standard enthalpy of reaction is equal to the standard enthalpy of formation.(2019)

$$\textbf{(A)} \hspace{1cm} 2\text{H}_2(g) + \text{O}_2(g) \longrightarrow 2\text{H}_2\text{O}(\ell)$$

(B)
$$2C(g) + 3H_2(g) \longrightarrow C_2H_6(g)$$

(C)
$$\frac{1}{6}$$
S₈(s) + O₂(g) \longrightarrow SO₂(g)

(D)
$$\frac{3}{2}$$
O₂(g) \longrightarrow O₃(g)